skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goodridge, Wade H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial ability is a well-known predictor of success in science, technology, engineering, and mathematics (STEM) fields. The purpose of this study was to investigate and understand the spatial strategies that were used by blind and low-vision (BLV) individuals as they solved problems on the tactile mental cutting test (TMCT), an instrument that was designed to measure the spatial ability of BLV audiences. The TMCT is an accessible adaptation of the older, 1938 version of the mental cutting test (MCT) that has been used extensively in spatial ability research. Additionally, this paper seeks to compare these strategies with existing strategies that have been investigated with sighted populations. The BLV community is underrepresented in engineering and in spatial ability research. By understanding how BLV students understand and solve spatial problems and concepts, educators can develop and enhance educational content that is relevant to this population. By incorporating perspectives from the BLV community and making STEM curricula accessible to this population, more BLV individuals may be encouraged to pursue STEM or engineering career pathways. 
    more » « less
  2. This article presents tactile drafting techniques developed in collaboration with blind educators and students that have the potential to increase BLV students’ access to drafting and engineering graphic curriculum in K-12 and higher education. This work builds on previous work funded by the National Science Foundation (Goodridge et al., 2019; Ashby et al., 2018; Lopez et al., 2020; Goodridge et al., 2021a; Goodridge et al., 2021b) and it is the authors’ hope that some of the practices included herein will allow BLV youth to further develop technological and engineering literacy in related technology and engineering graphics courses. 
    more » « less